Hamburg (Deutschland) – Wie konnte ein Asteroideneinschlag vor rund 66 Millionen Jahren nahe der heutigen Hafenstadt Chicxulub im Norden der mexikanischen Halbinsel Yucatán ungefähr 75 Prozent des damaligen Lebens auf unserem Planeten auslöschen? Ein internationales Forschungsteam hat mithilfe von Bohrkernen und Computersimulationen Hinweise dafür gefunden, dass der Asteroid im tödlichsten Winkel einschlug.
Wie das Team um Prof. Dr. Ulrich Riller aus dem Fachbereich Geowissenschaften der Universität Hamburg gemeinsam mit Kollegen aktuell im Fachjournal „Nature Communications“ (DOI: 10.1038/s41467-020-15269-x) berichtet, zeigen die Untersuchungen, dass der Asteroid mit einem Durchmesser von etwa 14 Kilometern in einem Winkel von etwa 60 Grad über dem Horizont aus Richtung Nordosten kommend auf der Erde einschlug. „Dieser ‚tödliche Winkel‘ verursachte die größtmögliche Einschlagsenergie und führte zu einer maximalen Freisetzung von klimaverändernden Gasen aus der Erdkruste, die in die obere Atmosphäre geschleudert wurden und die Sonne für mehrere Jahre verdunkelten“, erläutert Riller.
www.grenzwissenschaft-aktuell.de
+ HIER können Sie den täglichen und kostenlosen GreWi-Newsletter bestellen +
Schwefelverbindungen waren dabei besonders gefährlich, da sie giftige Gase und Aerosole bildeten, erläutert die Pressemitteilung der Universität Hamburg. „Diese winzigen Partikel blockierten die Sonneneinstrahlung sowie die Photosynthese der Pflanzen. Das gesamte Klima kühlte sich rasch ab. Der Asteroideneinschlag löste damit eine Kette von klimatischen und ökologischen Ereignissen aus, die zu einem Massenaussterben führten, dem letztlich auch die Dinosaurier zum Opfer fielen.“
Die Gase bildeten sich, weil verschiedene Minerale im Gestein durch die gewaltigen Kräfte des Asteroiden verdampften. Das zeigen unter anderem Bohruntersuchungen des Forschungsteams. „Die Tatsache, dass sogenannte Evaporite, insbesondere Gipse, in den Bohrkernen fehlen, wird dadurch erklärt, dass die Verdampfung solcher Gesteine bei einem Einschlagswinkel von 60 Grad am größten ist. Damit sind beim Einschlag des Meteoriten riesige Mengen giftiger Sulfat-Gase, Wasserdampf und Kohlendioxid in die Atmosphäre gelangt“, so Riller. Geophysikalische Simulationen hätten gezeigt, dass bei einem steileren oder flacheren Winkel durch die verringerte Einschlagsenergie geringere Mengen freigesetzt worden wären.
Ausschlaggebend für die Ermittlung des Einschlagswinkels und der Einschlagsrichtung war zudem die Beziehung zwischen dem Kraterzentrum, dem Zentrum des Ringgebirges — ein Ring von Bergen innerhalb des Kraters — und dem Zentrum des angehobenen Mantelgesteins, etwa 30 Kilometer unterhalb des Kraters.
Die Grundlage der Berechnungen bildete die Erkenntnis, dass Gestein beim Einschlag eines Meteoriten vorübergehend den Zustand ändert. „Krater dieser Größe entstehen innerhalb von zehn Minuten. Dies setzt voraus, dass sich das Gestein kurzzeitig wie eine Flüssigkeit verhält“, erklärt Riller. Gemeinsam mit seinen Kolleginnen und Kollegen konnte der Hamburger Forscher 2018 erstmalig die verschiedenen Mechanismen belegen, die dieses extreme mechanische Verhalten von Gestein bei einem Meteoriteneinschlag bewirken.
WEITERE MELDUNGEN ZUM THEMA
Erdnaher Asteroid offenbart Lücken im irdischen Früherkennungs- und Warnsystem 20. September 2019
Keine Nemesis: Daten liefern keinen Beleg für periodische Asteroiden-Einschlagswellen 9. März 2017
Quelle: Universität Hamburg
© grenzwissenschaft-aktuell.de